

 Service-oriented computing (SOC) in a cloud computing environment

 A.I. Petrenko
 National Technical University of Ukraine “Kyiv Polytechnic Institute”
 tolja.petrenko@gmail.com

Abstact

Service-Oriented Computing (SOC) is an emerging
paradigm for developing software systems that
employ services. The distinction between SOC and
traditional computing is that application builders no
longer construct software from scratch using a
programming language. Instead, they specify the
application logic in a high-level specification
language, utilizing standard services as components.
This work presents the development of the
Engineering Design Platform in a cloud computing
environment, based on SOC and intended, in
particular, for modeling and optimization of
Nonlinear Dynamic Systems, based on components
of different physical nature and being widely spread
in different scientific and engineering fields.

1. Introduction

The Service-Oriented Computing (SOC) paradigm
refers to the set of concepts, principles, and methods
that represent computing in Service-Oriented
Architecture (SOA) in which software applications
are constructed based on independent component
services with standard interfaces. SOC represents a
new generation distributed computing platform for
programming distributed applications by means of
the composition of services. The visionary promise of
SOC is a world-scale network of loosely coupled
services that can be assembled with little effort in
agile applications that may span organizations and
computing platforms. Since services may be offered
by different enterprises and communicate over the
Internet, they provide a distributed computing
infrastructure for both intra- and cross-enterprise
application integration and collaboration. Service
clients (end-user organizations that use some service)
and service aggregators (organizations that
consolidate multiple services into a new, single
service offering) utilize service descriptions to
achieve their objectives. So, Service-Oriented
Computing is a paradigm and Service Oriented
Architecture is an architectural model which allows

interoperability, re-usability, loose-coupling of its
components and provides mechanisms to describe
publish and discover available services.

2. Web-services
The distinction between SOC and traditional
computing is that application builders no longer
construct software from scratch using a programming
language. Instead, they specify the application logic
in a high-level specification language, utilizing
standard services as components.

 The central definition being used here is a service,
the most important concept of the service-oriented
paradigm. The definition of service for the W3C
Working Group is: “A service is an abstract resource
that represents a capability of performing tasks that
form a coherent functionality from the point of view
of provider entities and requester entities. To be used,
a service must be realized by a concrete provider
agent.” This definition is correct but it is too abstract
because too many things could be a service. There are
various definitions of a service within the context of
Service Oriented Computing in the literature, among
of which there are the following: “A service is a
system function that is well defined, self-contained
and does not depend on the context or state of other
services”; “A service is a unit of work to be
performed on behalf of some computing entity, such
as a human user or another program”. Services
perform functions that can range from answering
simple requests to executing sophisticated business
processes requiring peer-to-peer relationships
between possibly multiple layers of service
consumers and providers. Any piece of code and any
application component deployed on a system can be
reused and transformed into a network-available
service. Services reflect a "service-oriented"
approach to programming, based on the idea of
composing applications by discovering and invoking
network-available services rather than building new
applications or by invoking available applications to
accomplish some task. It is likely that in the future,
all computing units, both hardware and software,

mailto:tolja.petrenko@gmail.com

both small (such embedded systems) and large (such
as mainframes) will be organized as services, i.e.,
systems will be servicetized.
 As of today the most prominent technology based
on SOC is Web Services, a set of open specifications
that focuses on interoperability and compatibility
with existing infrastructures. A Web service is a
specific kind of service that is identified by a URI,
whose service description and transport utilize open
Internet standards. Interactions between Web services
typically occur as SOAP calls carrying XML data
content. Interface descriptions of the Web services
are expressed using Web Services Definition
Language (WSDL). The Universal Description,
Discovery, and Integration (UDDI) standard defines
a protocol for directory services that contain Web
service descriptions. UDDI enables Web service
clients to locate candidate services and discover their
details. Service aggregators may use the Business
Process Execution Language for Web Services
(BPEL4WS) to create new Web services by defining
corresponding compositions of the interfaces and
internal processes of existing services. One of the
most important aspects in SOC is aggregation
(composition). The public interfaces exposed by each
service allow for the composition of the latter in
complex workflows, in order to implement
functionalities that reuse those that are already
offered by the single services. At the present service
composition can be done in two different approaches:
orchestration and choreography. In orchestration a
single service, called orchestrator, is responsible for
composing and coordinating the other services in
order to complete the desired task. Choreography,
instead, describes the interactions between the
various services, which execute a global strategy in
order to achieve the desired result without a single
point of control. For these reasons it is said that
orchestration offers a local viewpoint whereas
choreography offers a global viewpoint. At the
present the most credited language for dealing with
service orchestration is WS-BPEL (BPEL for short).
On the other hand, the reference language for
choreography is WS-CDL. Service Oriented
Computation deals with implementing the core
services, and Service Oriented
Composition/Management about managerial tasks
(WS-BPEL, WS-CDL), and Service Oriented
Communication would relate to message routing
(WS-Addressing, WS-Reliable Delivery, etc.).

3. Cloud Computing
 Advancements in Cloud Computing have raised
the potential of realizing service-orientation to

unprecedented heights. Cloud Computing is an
emerging paradigm for consumption and delivery of
IT based services, based on concepts derived from
consumer internet services, like self-service,
apparently unlimited or elastic resources and flexible
services options like IaaS (Infrastructure as a
Service),PaaS (Platform as a Service) and SaaS
(Software as a Service) . The delivery of software as
a set of distributed services that can be configured
and bound can help to solve problems like software
reuse, deployment and evolution. The “software as a
service model” will open the way to the rapid
creation of new value-added composite services
based on existing ones. Although service-oriented
computing in cloud computing environments presents
a new set of research challenges, their combination
provides potentially transformative opportunities.
With cloud computing, new Internet services can be
developed and deployed without capital acquisitions
of hardware or large human integration expenses.

 Semantic processing of service-based interfaces,
semantic service discovery, service composition and
consumption, and quality of service are the current
leading research topics. What happens when
computing itself is the service? Essentially, this is
what cloud computing provides: applications,
platforms, network capabilities, and storage, all as
services. Over time, it will be interesting to see how
cloud-based services will enhance sharing and thus
improve this web of possibilities.
 SOC requires the management of loosely coupled
services to maintain its working condition.
Furthermore, each service within a workflow could
reside with unique service providers. This is a
challenge to service discovery because current
service repositories are decentralized and not well
advertised. In a cloud computing environment the
challenge of service management and monitoring is
extended. Current cloud computing providers don’t
offer user-customized management and monitoring
mechanisms built into their infrastructure. Hence, it’s
still the service developer’s responsibility to provide
programs and utilities to manage and monitor
services.’

4. SOC in Engineering Design
The IASA (Institute of Applied System Analysis) of
NTUU “Kiev Polytechnic Institute” is conducting the
following research and development activities in the
domain of SOC target:

1). Investigating Engineering Design procedures
together with partners as possible services in
distributed environments instead of present attempts

to migrate monolithic large CAE/CAD software
systems into the grid/cloud infrastructure as it is done
in [1-4]. To get this it is necessary:

▪ to investigate the generalized engineering design
process and to select its loosely coupled stages and
procedures for subsequent their transferring to the
forms of standardized web-services;
 ▪ to analyze the existing mathematical modeling
and optimal design software for the possible re-use of
the best algorithms and design procedures
implementations in the creating the depository of
applied web services;
▪ to develop a container with interfaces for
standardized individual web-services based on
international standards and protocols which allow
building compositions from these web-services as
design (calculations) workflows.
 ▪ to implement novel service-oriented design
paradigm in Engineering according to which all
levels of design including components, circuit and
system levels are divided into separate loosely
coupled stages and procedures for their subsequent
transfer to the form of standardized web-services.

 2). Extending of service management and
monitoring facilities in a cloud computing environ-
ment by making these services to be more centralized
and allowing them to use interconnected multiple
distributed services databases. To realize this
opportunity, it is necessary to incorporate in a cloud
the service-based information similar to the type of
information captured in UDDI directory services and
provide cross-cloud connectivity to facilitate the
ability to openly discover the services residing within
distributed databases. Standard cloud APIs will let
service providers deploy their services seamlessly to
multiple clouds computing providers and cloud
computing providers should add features to their
cloud infrastructures to enable management and
monitoring for deployed services.

3). Using of service metadata for service. Inference
of machine-interpretable information about what the
service can do and what it can provide remains an
open issue. Syntactic interpretation of service-based
information lacks the confidence to perform this
function well because the meaning of underlying
information is missing. Semantic approaches that
allow meaningful definitions of information in cloud
environments offer solutions for many service
providers who may reside within the same
infrastructure by agreement on linked ontology.
Third-party software agents operating within a cloud
might be able to derive ontological information from
the stored data and operations. Service-oriented and
cloud computing combined will indeed begin to
challenge the way of enterprise computing
development. Thanks to ontology it becomes possible
to create service-oriented applications even by

orchestrating legacy applications that do not support
the Web Services specifications.
4). Performing semantic approach with help of novel
RESTful Web services which are alternative to
SOAP- and Web Services Description Language
(WSDL)-based Web services. REST
(Representational State Transfer) defines a set of
architectural principles by which Web services can be
designed with focus on a system's resources,
including how resource states are addressed and
transferred over HTTP by a wide range of clients
written in different languages. A concrete
implementation of a REST Web service follows four
basic design principles: (a) Use HTTP methods
explicitly; (b) Be stateless; (c) Expose directory
structure-like URIs (Uniform Resource Identifiers);
(d) Transfer XML, JavaScript Object Notation
(JSON), or both. Use only the standard HTTP
messages -- GET,PUT, POST and DELETE -- to
provide the full capabilities of the application
Exposing a system's resources through a RESTful
API is a flexible way to provide different kinds of
applications with data formatted in a standard way. It
helps to meet integration requirements that are
critical to building systems where data can be easily
combined (mashups) and to extend or build on a set
of base, RESTful services into something much
bigger. REST supports intermediaries (proxies and
gateways) as data transformation and caching
components and enables transfer of data in streams of
unlimited size and type.
 It is planned to analyze recent trends in field of web-
services and its semantic annotations, to compare and
integrate the procedure-oriented and resource-
oriented services taking account their advantages and
constraints and using LinkedData technology [5] for
combining Web services, RESTful services and
Semantic Web-Services on the base of known
SPARQL, RDF and other standards.

5). Re-engineering the existing service workflow
tools (Taverna, Kepler or Askalon) for cases of
orchestrating web-services of different types,
including RESTful services, Semantic web-services
and traditional WS* services by using orchestration
capabilities of standardized WS-BPEL engines,
LinkedDataServices (LIDS) and WSMX (the
prototype of Semantic Web-Services workflow).

6). Demonstrating the effectiveness of the Service-
oriented computing (SOC) in a cloud computing
environment by developing Engineering Design
Platform, in particular, for modeling and optimization
of Nonlinear Dynamic Systems, based on
components of different physical nature and being
widely spread in different scientific and engineering
fields. It is the cross-disciplinary application for

distributed computing in the form of a network of
collaborative components functioning within or
across organization borders. it seems to be very
useful for people who have needs to use applications
composed by SOC, as well as for the people who can
design sophisticated applications using services.

6. Going research

 For building a prototype of the Engineering Design
Platform based on SOC we are looking partners for
submitting Horison-2020 project which are agree to
participate in :
▪ developing a distributed web-services repository
which provides the access to autonomous, platform-
independent Design procedures of CAE / CAD tools,
say, for MEMS design (operations with large-scale
mathematical models, steady state analysis, transient
and frequency domain analysis, sensitivity and
statistical analysis, parametric optimization and
optimal tolerances assignment, solution centering,
etc.) and supporting procedures (cross-domain
mathematical model description translation, data
formats translation etc.) based on innovative original
numerical methods; Algorithms proposed for many
design web-services are novel and unique (multi-
criterion optimization, optimal tolerances assignment,
yield maximization, stiff- and ill-conditional tasks
solving, etc.).

▪ providing possibilities for different research teams
to contribute in web-services repository development
using different programming languages and planning
to implement different data from distributed sources.
Due to loosely coupled web-services feathers users
can modify and adapt a composed application which
is preserved when some web-services are changed.
Design in Engineering becomes personalized and
customized because users can build and adjust their
design scenario and workflow by selecting the
necessary web-services (as calculation procedures) to
be executed on grid/cloud resources. A user can also
introduce new component models and their
parameters, which is absent in any existing SPICE-
like simulation software.

▪ creating a service workflow tools for composition
and orchestration of heterogeneous web-services into
a user defined computing scenario or a Design route,
which comprises a set of ontologies, domain-specific
heuristics, and a knowledge base to support the semi-
automatic workflow composition. In particular, the
ontology will cover various aspects of Engineering
Design and the composition will be based knowledge
advanced matchmaking algorithms based on the
assumption of concept types, the properties of inputs,

outputs, and data. The workflow composition tool
will adapt and extend existing knowledge base
solutions. The IASA will demonstrate how to semi-
automatically create Engineering Design workflows
using a knowledge-based approach and how to
improve their composition by elaborating different
workflow versions to increase the potential for
optimising non-functional parameters (different
workflow versions may expose different potential for
improving execution times, energy consumption, or
computing costs).

▪ transferring Engineering Design Platform in cloud
environment and execute it there on computing
resources being selected by a broker of cloud
infrastructure middleware.

7. Networked Optimal Mircosystems Designer

The main idea of SOC was proved experimentally by
development of the multi-layered architecture of the
grid-enabled computer simulation software (fig.1)[6]
This architecture is characterized by the following:
▪ functionality is distributed across the ecosystem of
both web services and grid services (enabling
utilization of grid computing resources)
▪ it is compatible with adopted standards and
protocols
▪ it supports custom user analysis scenario
development and execution
functionality is accessible with lightweight web
interface
▪ it hides the complexity of web-service interaction
from user with abstract workflow concept and simple
graphical workflow editor (fig.2).

 This toolkit is named by WebALLTED (Web ALL
Technology Designer) and it is devoted for schematic
design of complicated technical systems (including
Nonlinear Dynamic Systems) composed of either/and
electronic, hydraulic, pneumatic, mechanical,
electromagnetic, and other subsystems.

 Fig.1. WebALLRD general architecture

WebALLTED is based on the original numerical
algorithms for all the stages of design [7]: starting
from steady state, frequency and transient analyses
till parametrical optimization of a designed device
output characteristics, optimal component tolerances
assignment, centering of solution, and Yield
maximization.

Fig.2. User Interface Workflow Editor

WebALLTED can be used in distributed Grid
environment or it can be embedded in every Intranet
domain with client-server base configuration. The
typical sequence of design procedures is shown at
fig.3.

Fig.3. WebALLTED Task Description Processing

Advantages of above methods in comparison with
numerical methods used in SPICE-like simulators are
illustrated by the example of simulation of
benchmark circuits set being proposed by North
Carolina Microelectronics Centre (tabl. 1).

There are visible false oscillations at the plot (Fig.4),
when simulating the circuit Make2 with default
conditions in HSPICE due to used numerical
integration methods (2-nd order in HSPICE and
variable order (till 6-st) in WEbALLTED).

The toolkit in hand was used for selection of optimal
ratio W/L (width to lenth) for CMOS in
DEC Alpha AXP 64-bit microprocessor resulting in
twice increasing its run frequency. The toolkit was
used also for General Electric Ultrasonic Transducer
simulation.

 Table 1. Comparative simulation results of
WebALLTED and HSPICE

Fig.3. The simulation results obtained by ALLTED
(a) and by HSPISE (b)

 In comparison with SPICE-like programs
WebALLTED offers:
■ Faster simulation speed and improved numerical
convergence;
■ Sensitivity analysis for frequency and transient
analyses;
■ Comprehensive optimization procedure and
optimal tolerances assignment;
■ Alternative approach to the secondary response
parameters determination (delays, rise and fall
times, etc.);
■ Powerful user-defined modeling capability,
■ Original way of generating a system-level model of
MEMS from FEM component equations (being
received, for example, by means of ANSYS) when
these equations with boundary conditions are

Circuit DC
Iteration
number,
ALLTED

DC
Iteration
number,
HSPICE

TR
Iteration
number,
ALLTED

TR
Iteration
number,
HSPICE

Schmitt
trigger

88 67 146 537

Bjtinv 95 96 1340 3239

 Gm3 80 185 149 219

Make2 12 10 527 but
only 256
steps

 327 but
outputs
are
distorted

transformed into the equivalent equations of a
schematic model, which consists of L, C and G
components, and then are simplified by means of Y-Δ
transformation.
 The reduced MEMS model has a circuit character
unlike the existing approaches (for example, in
CoventorWare), where it is represented by the
reduced system of differential equations, that allows
using directly the input interface of WebALLTED
domestic circuit simulation package and making use
of its unique power optimization and tolerance
procedures.
The parallel algorithms of numeral integration of the
promoted reliability and exactness for dynamic
analysis tasks and their implementation into the
NetALLTED were developed and they run now on
the university cluster with 5.83 Tflops productivity .

8. Conclusion and future work
 Solution in hand is designed primarily to meet the
needs of small and medium enterprises in the modern
toolkit design of complex technical objects and
technological processes, as well as the small research
laboratories to perform complex computational
experiments. A long-term strategy for the
Engineering Design is to create flexible networked
simulation and modelling tools for “bottom-up” or
“top-down/ bottom-up”. This original conception of
Engineering SOC with Design procedures as web-
services has no complete competitor worldwide.

Achieved results can be shifted to other subject areas
if necessary additional web-services are developed
together with applied engineers with the possibility of
their replenishment and editing.

References

[1] TINACloud project home: http://www.tina.com
/English/ tina/
[2] PartSim project home: http://www.partsim.com/
examples
[3] RT-LAB project home: http://www.opal-
rt.com/company/company-profile/
 [4] FineSim Pro project home:
http://www.automation.com/ content/magmas-latest-
version-of-finesim-pro-delivers-3x-faster-runtime/
 [4] FineSim Pro project home:
http://www.automation.com/ content/magmas-latest-
version-of-finesim-pro-delivers-3x-faster-runtime/
[5] LinkedData technology project home:
http://linkeddatabook.com/editions/1.0/
[6] Petrenko A.I., V.Ladogubets, O. Finogenov, B.
Bulakh. WebALLTED: Interdisciplinary Simulator
Based on Grid Services .-// Proс. of East-West
Design and Test Conference (EWDT-12), Knarkiv,
15-18 Sept.2012
[7] Petrenko A.,Ladogubets V., Tchkalov V.,
Pudlowski Z. ”ALLTED- a Computer-Aided System
for Electronic Circuit Design”, UICEE.(UNESCO),
Melbourne, 1997.-204 p.

http://www.tina.com/
http://www.partsim.com/%20examples
http://www.partsim.com/%20examples
http://www.opal-rt.com/company/company-profile
http://www.opal-rt.com/company/company-profile
http://linkeddatabook.com/editions/1.0/

	Schmitt trigger

